

The Town of Georgina W & WW Risk Assessment and Prioritized Capital Plan

Council Meeting March 2nd, 2015

Presentation Content

- 1. Background and Study Objectives
- 2. Asset Management Principles
- 3. Risk Based Decision Making
- 4. Water and Wastewater System Overview
- 5. Management Scenarios
- 6. Analysis Results
- 7. Concluding Comments

W & WW Risk Assessment - Background

- Next Step following the Town's Asset Management Plan (2014)
- Leveraging:
 - Water & Wastewater GIS (2015)
 - Town's Dynamic "All Pipe" Water Model (2015)
 - Available Water & Wastewater Condition Information
- Prioritization of Water & Wastewater Project Based Risk

Study Objectives

- Development of Risk Assessment Framework
 - Data Consolidation
 - Tools Development
 - Methodology Development
- Conduct Asset by Asset Risk Analysis
- Development of Risk Based Asset Replacement Program
- Scenarios to Identify Funding Requirements

Goals of Asset Management

- Repeatable & Transparent Evidence-Based Budget Process
- Explicit Relationship to Performance of System and Expenditure Needs
- Optimized & Informed Decision-Making

Risk = Likelihood of Failure * Consequences of Failure

Watermains

Likelihood

 Ψ

Breaks

Material

Age (Remaining Service Life)

Consequence

 \downarrow

Local

 \downarrow

Pressure/Flow (Model)

Road Class

Landuse

Environmental

System

 \downarrow

Level of Service (Model)

Sewers

Likelihood

 Ψ

Age (Remaining Service Life)

Condition Score

Consequence

<u>Local</u>

 $\overline{\mathbf{\Psi}}$

Upstream PS

Flow/Diameter

Road

Landuse

Environmental

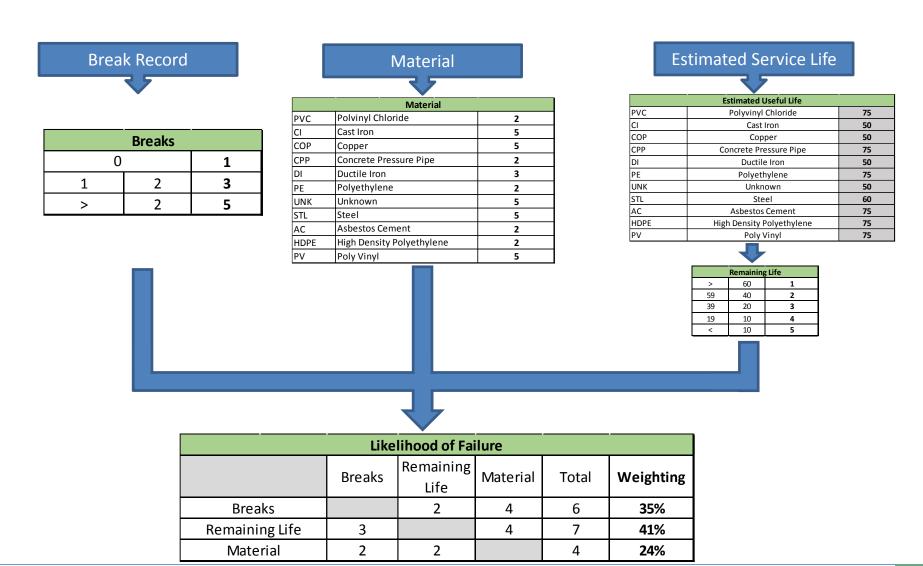
System

 \downarrow

Level of Service (Model)

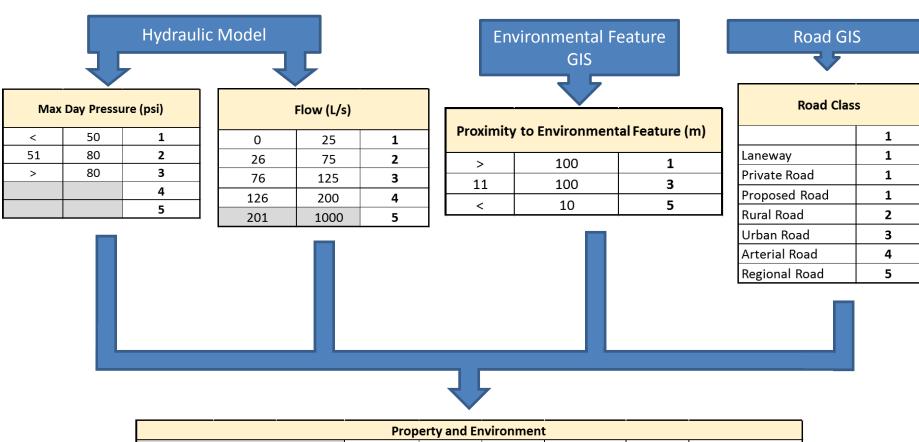
Weighting of Each Factor

A pairwise analysis is used to develop weightings of the relevant importance of each aspect.


Pairwise analyses are used for weighting the following:

- 1. Failure Indicators (either direct or indirect)
- Consequence Criteria (for each CoF category)
- 3. Consequence Categories

Assessing Risk – Likelihood of Failure


Likelihood of Failure

Watermain Consequence of Failure - Local

Consequence of Failure-Local

Property and Environment									
	Flow	Max Day	Road	Prox to Env	Total	Weighting			
	Flow	Pressure	Class	Feature					
Flow		4	4	5	13	35%			
Max Day Pressure	1		1	2	4	11%			
Road Class	4	5		4	13	35%			
Proximity to Env Feature	3	1	3		7	19%			

Water System

- Total System Length = 205,732 m
- Total System Replacement Cost = \$155M
- Average Asset Age = 21 years
- Average Remaining Life = 52 years

Wastewater System

- Total System Length = 174,570 m
- Total System Replacement Cost = \$136M
- Average Asset Age = 22 years
- Average Remaining Life = 66 years

Prioritized Capital Program - Scenarios

1. Average Asset Replacement Value

Average Annual Cost for Replacement = Total Replacement Cost÷Year for Full Replacement

2. Age Based Replacement Value

Replace Asset When → Asset Age = Estimated Service Life

3. Risk Based Replacement Value

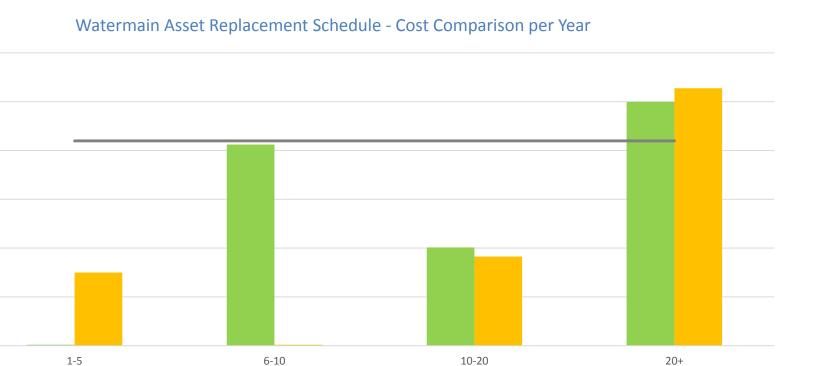
Replace Asset according to risk-based prioritization program
Risk: Likelihood of Failure & Consequence of Failure

Millions

Costs(\$)/Year

\$2.5

\$2.0


\$1.5

\$1.0

\$0.5

\$0.0

Watermains Replacement Program

Timing (Years)

Average Annual Cost

Age Based

Risk Based

Sewermains Replacement Program

20 Year Capital Program Summary

	Timing	Water		Wastewater	
Risk Based	20 Year Annual	\$	1,038,000	\$	831,000
Annual Based	20 Year Annual	\$	646,000	\$	21,000
Years for Full Replacement		74		89	
Average Annual Cost for Replacement		\$	2,099,000	\$	1,527,278

Key Analysis Results

- Overall, Low Likelihood of Failure within Water System
 - System is Relatively New
 - Low Number of Watermain Breaks
- Overall, Low Consequence of Failure within Water System
 - Good System Looping Resulting in Minimal Break Impacts to Customers

Low Watermain Risk Ratings

- Overall, Low Likelihood of Failure within Wastewater System
 - System is Relatively New
- Overall, Low Consequence of Failure within Wastewater system
 - 4.8 km / 175 km (3%) of Sewers 600 mm or Larger

Moving Forward

- 1. Tools in place to be continually updated as new information becomes available
- 2. Sewer analysis can be enhanced with:
 - a) Condition Scores (CCTV Inspection)
 - b) Sewer System Model
 - c) Input on Scoring, Rating, Weighting and Actions
- 3. Adjust priorities and risk sensitivity as needed
- Use updated tool to help manage system and balance priorities

Thank You

Q&A